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1. Introduction

Accurate life prediction is a crucial component to the successful
commercialization of high-power battery technologies for vari-
ous applications, including the automotive industry. In conjunction
with the Partnership for a New Generation of Vehicles (PNGV),
the Advanced Technology Development (ATD) Program was initi-
ated in 19981 by the U.S. Department of Energy (DOEs) Office of
Advanced Automotive Technologies to find solutions to the barriers
that limit the commercialization of high-power lithium-ion bat-
teries for hybrid-electric vehicle (HEV) and plug-in hybrid (PHEV)
applications. A significant barrier that limits commercialization is
the requirement for a long-lived battery (15 years or more). Thus,
one goal of the ATD Program is to develop methods to accurately
predict the life of lithium-ion batteries in the HEV and PHEV envi-
ronments with a high level of confidence given only 1 or 2 years
of accelerated aging. As part of this effort, a number of method-
ologies for estimating life (with associated uncertainty bounds)
have been developed and applied to degradation data that were
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acquired during various accelerated degradation experiments. The
purpose of this article is to describe our current methodology for
estimating cell life with uncertainty bounds. This methodology,
which depends on degradation and error models, is illustrated by

application to data acquired during a recent calendar-life experi-
ment. In this particular case, the forms of the degradation and error
models were simple and empirically based. The general approach
outlined here should be applicable to other model forms as well.
Monte Carlo simulations were used to assess lack-of-fit and to indi-
cate the uncertainty limits for average cell life (assuming that no
lack-of-fit is found). Finally, we discuss the issue of whether or not
models based on data acquired from cells aged under static condi-
tions will accurately predict cell degradation in real-life, dynamic
aging conditions. An experimental process for exploring this issue
is discussed.

2. Development of degradation and error models

As the cell ages, the performance degrades. The level of per-
formance degradation depends on the time and stresses to which
the cell has been exposed. The measured performance at any given
time for an individual cell is, thus, a combination of effects that
can be related to the technology, to the unique behavior of the
individual cell, and to the measurement process. A generic model
form that captures these effects is given by Yi(X;t) = �(X;t) + � i(X;t),
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where Yi(X;t) represents the measured performance of the ith cell
after being subjected to aging for time t under stress factors that are
represented by X. The average cell performance is represented by
�(X;t). The combined effects that are related to the unique behavior
of the ith individual cell and measurement error are represented by
� i(X;t). Separate model forms for �(X;t) and � i(X;t) are presented
here.

A degradation model expresses the expected performance level
versus the time and conditions under which a cell has been
aged:�(X;t). This model can be empirical, chemistry/physics-based,
or some combination of both. A wide variety of model forms are
possible. In practice, the specific form of the model that is used
will depend on the particular technology and set of stress factors.
In the calendar-life example given in this paper we use a simple
degradation model with a single stress factor, temperature. The
simple model and its log transform are given in Eqs. (1) and (2),
respectively. Here, �(X;t) = �(T;t) represents the expected relative
resistance (resistance at time t divided by the initial resistance).

�(T; t) = 1 + exp
{

ˇ0 + ˇ1 · 1
T

}
· t� (1)

log(�(T; t) − 1) = ˇ0 + ˇ1 · 1
T

+ � · log(t) (2)

Temperature is represented by T while ˇ0, ˇ1, and � represent the
model parameters. This particular model form has both a physi-
cal and empirical basis. The physical basis is apparent through the
Arrhenius (1/T) rate dependence.

We used the convention that �(X;t) = 1 for t = 0 and then
increases in value as the cell ages. Note that, in cases where the
natural response is initially one and decreases to zero as the cell
ages, �(X;t) can be considered as a model for the inverse of the nat-
ural response. Examples of such a natural response include relative
power and relative capacity. Thus in such cases, �(X;t) can be con-
sidered as a model for inverse relative power and inverse relative
capacity.

In order to conduct accurate simulations, one needs a viable
error model that accounts for variability due to measurement error
as well as the intrinsic differences between cells. We recommend
the error model given in Eq. (3).

�i(X; t) = ıi · (�(X; t) − 1) + �i(t) (3)

where ıi represents a random, cell-specific, proportional effect
and �i(t) represents the effects of measurement error on Yi(X;t).

The unique effect of the ith cell with respect to performance
(e.g., relative resistance) is given by the product, ıi·(�(X;t)−1).
This effect increases as the ith cell ages since (�(X;t)−1) increases
with t. Considered over the population of cells, this effect mod-
els the increasing level of cell-to-cell variation in performance
that is observed as cells age under the same stress condition.
The overall difference between the observed and expected perfor-
mance (� i(X;t)) for the ith cell is a combination of the cell-effect
(ıi·(�(X;t)−1) and the effects of measurement error (�i(t)). We
regard measurement error to be associated with the measurement
system and to be independent of the state of the cell. When Yi(X;t)
represents relative resistance,

Yi(X; t) = Rtrue(i, t) + εi(t)
Rtrue(i, 0) + εi(0)

(4)

where Rtrue(i,t) is the unknown, but true, value of the resistance
of the ith cell at time t, and εi(t) is the specific unknown error
associated with that measurement. Thus,

�i(t) = Rtrue(i, t) + εi(t)
Rtrue(i, 0) + εi(0)

− Rtrue(i, t)
Rtrue(i, 0)

. (5)
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Table 1
Experimental conditions

Temperature (◦C) State-of-charge Number of cells

30 SOCMAX 3
40 SOCMAX − 10% 3
40 SOCMAX 3
40 SOCMAX + 10% 3
47.5 SOCMAX − 10% 3
47.5 SOCMAX 3
47.5 SOCMAX + 10% 3
55 SOCMAX − 10% 3
55 SOCMAX 3
55 SOCMAX + 10% 3

If we assume that (1) the measurement errors are independent
with a relative standard deviation of ˛ (i.e., �ε = ˛·Rtrue(i,0)); (2)
Rtrue(i,t)/Rtrue(i,0) ≈ 1; and (3) ˛ is relatively small, then the vari-
ance of �i(t), given by �2

� , is approximately 2·˛2. In practice, we
expect Rtrue(i,t)/Rtrue(i,0) < 1.5 and ˛ < 0.05. From here on, the vari-
ance of ıi will be denoted by �2

ı
. Assuming that the mean values

of εi(t) and ıi are zero, then within a given group of cells that have
experienced the same stresses and aging time,

Mean(Yi(X; t)) = �(X; t) (6)

and

Var(Yi(X; t)) = Var(�i(X; t)) = �2
ı · (�(X; t) − 1)2 + �2

� (7)

Thus, this error model implies that the expected variability of the
cells increases as the expected level of degradation increases. Here,
�(X;t) refers to the particular degradation model that is used, not
necessarily that from the example. In the case of the example, the
degradation and error models were used with experimental data
to estimate the model parameters, ˇ0, ˇ1, �, �2

� and �2
ı

.
The error model provides a basis for assessing the level of mea-

surement error based on the experimental aging data. There are
other more direct ways to assess the level of measurement error
(e.g., see [1]). Idaho National Laboratory (INL) has developed a
direct approach to determining the level of measurement uncer-
tainty, and has taken significant steps towards reducing the level
of that uncertainty [2,3]. Prior to cell aging, the test equipment is
calibrated according to manufacturer specifications and indepen-
dently checked for accuracy at different current and voltage levels
within the full-scale range of the test channel using a digital volt-
meter and shunt (to determine current). The test channel response

measured by the digital voltmeter and shunt, and their associated
calibration errors, are used to determine the total channel error (in
terms of voltage and current). The uncertainties of these measured
responses are then used to assess the level of measurement uncer-
tainty of any derived performance variable (e.g., cell impedance)
required by the life model. Specifically, the uncertainties of the
derived variable(s) are based on low-order Taylor Series approxi-
mations of the derived variable(s) with respect to the independent
measurements of voltage and/or current. In the example, we com-
pare the levels of measurement uncertainty obtained from the error
model and from the direct approach given in [2,3].

3. Experimental

The purpose of the experiment was to validate the testing rec-
ommended in the Technology Life Verification Test (TLVT) Manual
[4]. High-power SAFT VL7P lithium-ion cylindrical cells were pur-
chased for this experiment. These cells were rated at 7 Ah with
a maximum and minimum voltage of 4.0–2.7 V, respectively. Ten
experimental conditions were investigated with a total of 30 cells
(see Table 1). Two controlled factors (aging temperature and state
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Fig. 1. MPPC pulse profile.

of charge) were used. Nine experimental conditions were derived
from a full-factorial experimental plan involving three levels for
temperature (40 ◦C, 47.5 ◦C, and 55 ◦C) and three levels for state
of charge (SOCMAX − 10%, SOCMAX, and SOCMAX + 10%) as defined
below. The values for SOCMAX and SOCMIN for the SAFT VL7P cells
were voltage based, and roughly corresponded to 62% and 24% SOC,
respectively. Additionally, three cells were evaluated at 30 ◦C and
SOCMAX for the purpose of validation.

The cells were subjected to calendar-life testing at the desig-
nated temperatures with a daily taper charge back to the voltage
corresponding to the designated SOC. The cells were placed in an
isothermal chamber during aging to ensure temperature control.
Calendar-life testing was interrupted every 31.5 days for reference
performance testing (RPT) at 30 ◦C to gauge the performance degra-
dation of the cell. Eight-hour temperature soaks followed each RPT.
The RPT consisted primarily of the minimum pulse power char-
acterization (MPPC) test [4]. The pulse profile is shown in Fig. 1,
and consists of 10 s discharge and regen (i.e., charge captured dur-
ing regenerative braking) pulse at specified rates (typically a 5C1
discharge rate) with a 40 s rest in between at two different SOC
conditions (SOCMAX and SOCMIN). These conditions are usually
specified by the manufacturer and are intended to represent the
anticipated operating range of the battery during normal usage.
The purpose of this test was to acquire useful resistance data while
avoiding effects that may artificially age the cells more rapidly such
as time spent at full charge. Although this profile was shown to have

deficiencies [5], the data are still useful for the purposes of devel-
oping a life and error model and demonstrating the methodology
to predict life. From the MPPC test, discharge (and regen) resis-
tances can be calculated by taking the difference between the initial
voltage prior to the pulse and the voltage at the end of the pulse
divided by the constant current. In summary, data discussed in
this article represent the discharge resistances at SOCMAX through
approximately 221 days of calendar-life aging with seven RPTs.

4. Results

4.1. Fitted degradation model

The data from the full-factorial part of the design were used to
construct a degradation model. The 30 ◦C data were used strictly for
model validation. The effect of SOC (over its experimental range) on
degradation was not found to be statistically significant. Thus, the
degradation model described by Eq. (2) was fit to the experimental
data (40 ◦C, 47.5 ◦C, and 55 ◦C) using robust linear regression [6].
In cases where the degradation model is not expressed as a linear
Fig. 2. Fitted degradation model with data.

model, parameter estimation can be more difficult. Nevertheless,
there are a number of methods that exist for estimating parameters
in the case of nonlinear models (e.g., see [7]).

The final fitted degradation model is �̂(X; t) = 1 + exp{ ˆ̌ 0 +
ˆ̌ 1 · (1/T)} · t1/2, where ˆ̌ 0 = 18.11(1.1) and ˆ̌ 1 = −6236(360);
the “bootstrap” standard error of each estimated parameter is
given in parentheses (see Section 4.4). Fitting the full model,
�(X;t) = 1 + exp{ˇ0 + ˇ1·1/T}·t� , resulted in �̂ = 0.52 with a standard
error of 0.019. Since �̂ was indistinguishable from 1/2, � was fixed at
1/2 in order to simplify the model with a common transformation
of time. The experimental data (symbols) and final fitted degrada-
tion model (lines) are given in Fig. 2. Note that the 30 ◦C data are
well-approximated by the model.

The model was used to estimate the lifetime of the cell at a
specified temperature by specifying an end-of-life criterion for the
cell. Suppose that the lifetime (tEOL) is defined to be the time
at which the resistance is predicted to increase by 30% when
the temperature, T, is 303 ◦K, then, t̂EOL = exp{(log(0.3) − { ˆ̌ 0 + ˆ̌ 1 ·
1/T})/0.5} = 12.6 years. The “bootstrap” standard error of the esti-
mated lifetime is 1.9 years (see Section 4.4). Note that the range
of applicability of this model is limited to conditions supported by
the experimental data. For example, it would not be appropriate to
use this model to predict the time associated with a 100% resistance
rise since the maximum resistance rise observed during the experi-

ment was less than 35%. Thus, one should continue the degradation
experiment until at least some of the test cells reach the end-of-life
condition. Finally, note that t̂EOL is an estimate of the mean cell life
of the technology that was tested. The lifetimes of individual cells
will vary about tEOL.

4.2. Fitted error model

Fig. 3 shows the results of fitting the error model described by
Eq. (3) to summaries of the experimental data (40 ◦C, 47.5 ◦C, and
55 ◦C) using robust linear regression. Each symbol summarizes the
sample variance of observed relative resistance versus the square of
the difference between the expected relative resistance and unity
for each group of data partitioned by temperature and RPT. The
high level of scatter about the robust regression line (red) is con-
sistent with the statistical variation of the sample variance based
on sparse data. The estimated error model parameters are given
by the slope and half of the intercept of the fitted line in Fig. 3;
they are �̂2

ı
= 3.2 × 10−3 and ˆ̨ 2 = 1.2 × 10−4, respectively. Thus,

the cell-specific proportional effect is estimated to have a standard
deviation of about 0.06 and the measurement error is estimated
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Fig. 3. Fitted error model. Data represented are across all SOC levels.

to have a relative standard deviation of about 0.01. As a point of
comparison, the independent determination of measurement error
using the INL methodology found that the relative standard devia-
tion of the measurement error (depending on the test equipment)
was about 0.006.
4.3. Lack-of-fit statistic

Lack-of-fit with respect to the fitted degradation model
was measured using the statistic, SSLOF =

∑3
i=1

∑7
t=1nit/�̂2

it
·

(Ȳi·t − �̂it)
2
, given 3 treatment groups (temperatures) and 7 RPTs.

Here, Ȳit is the average relative resistance of the ith tempera-
ture group at time t (consisting of nit cells); �̂it = 1 + exp{ ˆ̌ 0 +
ˆ̌ 1 · 1/Ti} · t1/2; and �̂2

it
= �̂2

ı
· (�̂it − 1)2 + �̂2

� . Monte Carlo simula-
tions (see Section 4.4) based on the developed degradation and
error models were used to assess whether the computed value of
the lack-of-fit statistic (in this case, SSLOF = 52.0) is unusually large
under the assumption that the models are accurate.

Fig. 4 summarizes the distribution of the values of SSLOF obtained
from 1000 Monte Carlo simulation trials of the experiment with
the assumed models (see Section 4.4). It is interesting to compare
SSLOF with the simulated distribution of SSLOF values. The empirical
cumulative distribution function evaluated at SSLOF = 52.0 exceeds
0.99. This means that less than 1% of the values of SSLOF from the

Fig. 4. Empirical cumulative distribution function of SSLOF from simulations.
Fig. 5. Predicted relative resistance versus average relative resistance.

simulation exceeded 52.0. Thus, it is unlikely that one would obtain
such a large value of SSLOF by chance given that the models are accu-
rate. So, we conclude that there is significant statistical evidence for
lack-of-fit.

The nature of the lack-of-fit reflected in the large value of SSLOF
is illustrated in Fig. 5. The model seems to slightly over-predict rel-
ative resistance at high levels of degradation, perhaps providing a
conservative estimate of life. In accepting this model and life esti-
mates derived from it, one needs to carefully consider this evidence
for lack-of-fit from a practical perspective.

4.4. Monte Carlo simulations

Monte Carlo simulations are used to simulate the measured per-
formance of cells subjected to aging at various stress conditions.
Accurate degradation and error models are required in order to
accurately simulate performance. The simulations can be used to
assess the uncertainty of model parameters and functions of model
parameters (e.g., mean cell life) estimated from experimental data.
In addition, the simulations can provide a basis for assessing the
quality of the model based on “lack-of-fit” statistics.

The simulation (see Appendix A for details) is set up to mimic the
actual experiment: same test duration, RPT frequency, experimen-

tal conditions, and number of cells per condition. A large number
of independent simulation trials are performed in which different
random realizations of cell-to-cell effects and measurement errors
(assumed to be normally distributed) are added to the assumed
truth provided by the degradation model. Thus, each trial simulates
the actual experiment that was performed. For each trial, model
parameters and average cell life are re-estimated. In addition, the
“lack-of-fit” statistic, SSLOF, is re-computed. Across all trials, distri-
butions of re-estimated model parameters, re-estimated average
cell life, and re-computed SSLOF are obtained. Based on the distribu-
tions of re-estimated model parameters and re-estimated average
cell life, one can assess the statistical uncertainty of model param-
eters and cell life estimated from fitting the actual experimental
data. In addition, the value of SSLOF obtained from fitting the orig-
inal data can be compared with the distribution of re-computed
SSLOF across trials to assess lack-of-fit.

Fig. 6 shows the simulated data and fitted model (evaluated at
40, 47.5, and 55 ◦C) associated with a single simulation trial. The
degradation model parameters re-estimated based on the simu-
lation data from this single trial are ˆ̌ 0 = 16.82 and ˆ̌ 1 = −5820.
Corresponding estimates of the error model parameters for this trial
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Fig. 6. Simulated data and fitted degradation model.

are �̂2
ı

= 7.8 × 10−3 and ˆ̨ 2 = 8.7 × 10−5. The corresponding mean
cell lifetime is re-estimated to be t̂EOL = 10.7 years with SSLOF = 8.7.

Fig. 7 summarizes the distribution of estimated mean cell life-
time for the complete set of 1000 simulation trials from which the
“bootstrap” standard error [8] of the estimated lifetime was derived.

This figure provides an idea of the level of statistical uncertainty
associated with estimating cell life given such an experiment and
assuming that the forms of the degradation and error models are
accurate. A lower 90% bootstrap confidence limit for mean cell life-
time is given by the 10th percentile of the 1000 simulated estimates
of life which is approximately 10.3 years. Thus, assuming the forms
of the degradation and error models are accurate, we have 90% con-
fidence that the actual mean cell life is at least 10.3 years. This can be
compared with the life estimate based on the actual experimental
data which is 12.6 years.

5. Degradation in dynamic aging conditions

As is usually the case, the calendar-life model presented
here was developed with data collected from cells aged under
static stress conditions. It is recommended that some degree
of additional testing be conducted in order to assess whether
or not the models can accurately predict cell degradation
in real-life, dynamic aging conditions (e.g., varying temper-
ature). This issue is discussed in Refs. [9] and [10]. For

Fig. 7. Histogram of life estimates (1000 simulation trials).
Sources 184 (2008) 312–317

Fig. 8. Illustration of memoryless process.

example, our degradation model can be solved in terms of
t, resulting in t−1/2 = exp{ˇ0 + ˇ1 · 1/T}/(�(X; t) − 1). Further-
more, ∂�(X; t)/∂t = 1/2 · exp{ˇ0 + ˇ1 · 1/T} · t−1/2 = exp{2 · (ˇ0 +
ˇ1 · 1/T)}/[2 · (�(X; t) − 1)]. By integrating this derivative equation
and allowing temperature to vary over time, we have

∫ �

1
(m −

1)dm = 1/2
∫ t

0
exp{2 · (ˇ0 + ˇ1 · 1/T(	))}d	 which simplifies to

1/2�2 − � + 1/2 = 1/2
∫ t

0
exp{2 · (ˇ0 + ˇ1 · 1/T(	))}d	. Thus, if a

cell was subjected to a temperature profile given by T(	), then
the expected relative resistance would be the solution to �̂, where
1/2�̂2 − �̂ + 1/2 = 1/2

∫ t

0
exp{2 · ( ˆ̌ 0 + ˆ̌ 1 · 1/T(	))}d	.

By using such an approach, a necessary condition for accurate
prediction of cell degradation in dynamic conditions is that degra-
dation be a “memoryless” process in terms of the performance
measure that is used. A memoryless process is one in which the
rate of future degradation does not depend on the environment
that produced the current state of health, but, instead, depends
only on the current state of health and the future environment. The
notion of a memoryless process that is discussed here has a clear
connection to (and was motivated by) the idea of a Markov process
in the context of probability theory (e.g., see [11]). Fig. 8 illustrates
a memoryless process in which three cells reach a common state of
health (relative resistance) at different times after being exposed to
different environments. Once reaching the common level of relative
resistance, the cells are subjected to the same environment for some
additional amount of time. If the future degradation of the cells does
depend on the past history, then “relative resistance” (by itself) is
not a sufficient indicator of “state of health.” If so, the degrada-

tion models may provide inaccurate predictions of cell degradation
in dynamic conditions. Furthermore, other performance measures
(possibly in combination) will be required to evaluate the “state of
health” of a cell.

There are a number of simple experiments that might be per-
formed to assess whether or not cell degradation as measured by
relative resistance (or some other measure of performance) is a
memoryless process. As indicated in Fig. 8, one could subject cells
to a number of different environments. By using frequent mea-
surements, each cell could be removed from testing and stored
cold at the point when some common target level of performance
is reached. Then, degradation of all cells would resume and be
observed under a common environment. Significant differences in
the subsequent degradation across the cells would indicate that
the degradation process is not memoryless. We expect to conduct
experiments like this in the future.

6. Conclusions

This paper provides methodology for modeling the degradation
of lithium-ion cells and estimating mean cell life. The methodology
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requires both a degradation model and an error model. Specific
degradation and error models are discussed in the context of an
illustrative example. In addition, this paper provides and illustrates
methodologies (involving Monte Carlo simulations) for assessing
lack-of-fit and assessing the statistical uncertainty associated with
the predicted life.
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Appendix A. Simulation details

The general simulation approach (which is a variant of the para-
metric bootstrap procedure [8]) is illustrated by expanding the
generic modeling notation to Yij(t) = �(Xj;t) + ıij·(�(Xj;t)−1) + �ij(t),
where j represents the stress condition and ij represents the ith cell
within the jth stress condition. Here, Yij(t) represents the measured
relative resistance of the ijth cell at time t, �(Xj;t) represents the
expected relative resistance for cells under the jth stress condition
at time t, ıij represents the random proportional effect of the ijth

cell, and �ij(t) represents the effect of the random measurement
errors on relative resistance associated with the ijth cell at the initial
measurement and at time t. The last term can be notionally parti-
tioned into two terms: �ij(t) ∼ 
ij(0) + 
ij(t), where the two terms
represents the effect of the individual measurement errors on rela-
tive resistance. For these simulations, the random effects, ıij, 
ij(0),
and 
ij(t), are assumed to be independent and normally distributed
each with a mean of zero and variance of �2

ı
, ˛2, and ˛2, respec-

tively. In terms of the example described in Sections 3 and 4, the
fitted degradation and error models are assumed to be true. That is,
�it = 1 + exp{ˇ0 + ˇ1 · 1/Ti} · t1/2 and �2

it
= �2

ı
· (�it − 1)2 + 2 · ˛2,

where ˇ0 = 18.11, ˇ1 = −6236, �2
ı

= 3.2 × 10−3, and ˛2 = 1.2 × 10−4.
The simulation is constructed as follows

1. Select J stress conditions to be used as well as number of cells
per stress condition: {nj: j = 1:J}.

2. Select the times at which the cells are to be measured: {tk:
k = 1:K}.

3. Compute the degradation model for each combination of stress
condition and measurement time: {�(Xj;tk):(j = 1:J) × (k = 1:K)}.
• For each trial, complete steps 4–8.

[

[
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4. Obtain a random sample of proportional effects where the ıij are
sampled independently from a normal distribution with mean
zero and standard deviation �ı: {ıij: (i = 1: nj) with (j = 1: J)}.

5. Obtain a random sample of initial measurement error effects
where the 
ij(0) are sampled independently from a normal dis-
tribution with mean zero and standard deviation ˛: {
ij(0):(i = 1:
nj) with (j = 1: J)}.

6. Obtain a random sample of measurement error effects where
the 
ij(t) are sampled independently from a normal distribution
with mean zero and standard deviation ˛: {
ij(tk): (i = 1:nj) with
(j = 1:J) and (k = 1:K)}.

7. Combine the constituent effects from steps 3–6 to form
the simulated relative resistance data: Yij(tk) = �(Xj;tk) +
ıij·(�(Xj;tk)−1) + 
ij(0) + 
ij(tk). (a) Check that Yij(tk) > 1.

8. Model the collective set of simulated resistance data for the cur-
rent trial
• Estimate model parameters (degradation and error).
• Estimate average cell life.
• Compute SSLOF.

9. Compute summary statistics (e.g., standard deviations and order
statistics) of model parameters, estimated cell life, and SSLOF
across trials. The standard deviations of the model parameters
and estimated cell life are referred to as bootstrap standard
errors.
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